172. (p-Phenylazophenyl)-isopropyloxycarbonyl, a New Protecting Group for Peptide Synthesis

by Aung Tun-Kyi and Robert Schwyzer

Institut für Molekularbiologie und Biophysik
Eidgenössische Technische Hochschule CHI-8093 Zürich

(9. VI. 76)

Abstract

Summary. The preparation and properties of thirty two $N(\alpha)-[2-(p-p h e n y l a z o p h e n y l)$-iso-propylcarbonyl]-amino-acids and derivatives are described. The new coloured protecting group (AZOC-) can be easily and selectively removed with mild acid treatment, much the same as the 2-(biphenyl)-isopropyloxycarbonyl (BPOC-)group. It is introduced via cuite stable and yet reactive, crystalline intermediates, $\mathrm{AZOC}-\mathrm{OPh}$ and $\mathrm{AZOC}-\mathrm{N}_{3}$.

The aim of this work was to develop a new amino-protecting group that combines certain advantages of earlier coloured groups [1] with those of the 2-(p-diphenyl)-

AZOC-
isopropyloxycarbonyl group (DPOC-, $\mathrm{BPOC}-)^{1}$) [2] or, for that matter, of the 2 -phenyl-isopropyloxycarbonyl group (PPOC-) [2] [4]. The new 2-(p-phenylazophenyl)-isopropyloxycarbonyl-group has, as an $\mathrm{N}(\alpha)$-protecting group for amino-acids, the following properties:

1) it can be introduced via stable, yet reactive, and crystalline intermediates such as its phenyl ester (AZOC-OPh) or acid azide (AZOC-N3) ;
2) it can be removed under practically the same mildly acidic conditions and with the same yields and velocities as the BPOC-group, leaving other (side-chain) protecting groups intact;
3) the colour facilitates the operations of purification and isolation by chromatographic and distribution techniques $\left[\lambda_{\max }=320-330 \mathrm{~nm}, \varepsilon=2.10^{5}-4.10^{5}\right.$ in ethanol];
4) the colour allows for an exact estimation of the reaction time needed for a complete removal of the protective group prior to a next coupling step (this could be an essential advantage for solid-phase synthesis).

[^0]Table. Analytical data of some $N(\alpha)$-AZOC-amino-acids and derivatives

No.	$\mathrm{N}(\alpha)$-AZOC-L-amino-acid	Calc. Mol.-wt.	Empirical formula	Yield Method	$\begin{aligned} & \text { M.p. } \\ & { }^{\circ} \mathrm{C} \text {. } \end{aligned}$	$\begin{aligned} & {[\alpha]_{D}^{25} \text { solvent }} \\ & (c=1) \end{aligned}$	Microanalysis Calc. Found			
							C \%	H \%	N \%	S\%
1	- Ala \cdot DCHA	454.55	$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{4}$	70\%	146-9	- 11.0 (MeOH)	66.06	7.54	12.33	
				A			65.90	7.38	12.59	
2	- $\operatorname{Arg}\left(\mathrm{NO}_{2}\right) \cdot$ DCHA	666.82	$\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{~N}_{8} \mathrm{O}_{6}$	68\%	129-131	$+2.8(\mathrm{MeOH})$	61.24	7.56	16.80	
				A			60.52	7.38	16.81	
3	$\cdot \operatorname{Arg}(\mathrm{TOS}) \cdot \mathrm{CHA}$	693.87	$\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{~S}$	59\%	131-133	- 1.9 (MeOH)	60.59	6.83	14.13	4.62
				A			60.74	7.08	13.24	4.66
4	- Asn	398,60	$\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5}$	50\%	167-8	- $2.8(\mathrm{MeOH})$	60.29	5.57	14.06	
				A			60.21	5.55	13.75	
5	- Asp 2 DCHA	762.00	$\mathrm{C}_{44} \mathrm{H}_{67} \mathrm{~N}_{5} \mathrm{O}_{6}$	73\%	158-60	+10.1 (MeOH)	69.33	8.86	9.19	
				A			69.60	8.86	8.91	
6	- Asp(OBZL) - CHA	588.38	$\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{6}$	60\%	156-7	$+31.5\left(\mathrm{CHCl}_{3}\right)$	67.38	6.81	9.52	
				A			67.53	6.92	9.56	
7	- $\mathrm{Cys}(\mathrm{ACM}) \cdot \mathrm{CHA}$	557.71	$\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}$	68\%	82-84	+ $18.8(\mathrm{MeOH})$	60.3	7.05	12.56	5.75
				C			60.26	7.12	12.37	5.79
8	- Glu $\cdot 2 \mathrm{CHA}$	611.75	$\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{6}$	80\%	193-6		64.78	8.07	11.45	
				A			64.45	8.01	11.49	
9	- Glu (OBZL) - CHA	602.70	$\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{6}$	45\%	156-7	$+27.5\left(\mathrm{CHCl}_{3}\right)$	67.74	7.02	9.30	
				A			67.66	7.11	9.25	
10	- Gln - DCHA	593.82	$\mathrm{C}_{33} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{5}$	32\%	-102	$+4.3\left(\mathrm{CHCl}_{3}\right)$	66.74	7.99	11.79	
				A			66.43	7.81	11.49	
11	- Gly	341.97	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{4}$	70\%	128-30	0 (MeOH)	63.39	5.60	12.29	
				A			63.63	5.71	12.25	
12	- His	421.46	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4}$	44\%	151-152	$+1.8(\mathrm{MeOH})$	62.70	5.50	16.62	
				C						
13	- $\mathrm{His}(\mathrm{BZL})$	511.55	$\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{4}$	50\%	200	$+105.4\left(\mathrm{CHCl}_{3}\right)$	68.09	5.71	13.69	
				A			68.12	5.71	13.70	
14	- His(DNP) - DCHA	769.88	$\mathrm{C}_{40} \mathrm{H}_{49} \mathrm{~N}_{8} \mathrm{O}_{8}$	65\%	132-134		62.40	6.42	14.55	
				A						
15	$\cdot \mathrm{rle} \cdot \mathrm{CHA}$	496.62	$\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4}$	52\%	158-60	$+2.9\left(\mathrm{CHCl}_{3}\right)$	67.73	8.12	11.28	
				A			67.96	8.07	11.17	
16	- Leu - CHA	496.62	$\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{4}$	60\%	168-71	$0 \quad\left(\mathrm{CHCl}_{3}\right)$	67.73	8.12	11.20	
				A			67.89	8.14	11.34	

Table (continuation)

No.	N() -AZOC-L-amino-acid	Calc. Mol.-wt	Empirical formula	Yield Method	$\begin{aligned} & \text { M.p. } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & {\left[\alpha \alpha_{1}^{25} \text { solvent }\right)} \\ & (c=1) \end{aligned}$	Microanalysis Calc. Found			
							C\%	H \%	N \%	S\%
17	- Lys (BOC) \cdot CHIA	612.79	$\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{~N}_{5} \mathrm{O}_{6}$	60%	95-99	+ 1.4 (MeOH)	$\begin{aligned} & 64.68 \\ & 64.34 \end{aligned}$	$\begin{aligned} & 8.23 \\ & 8.06 \end{aligned}$	$\begin{aligned} & 11.43 \\ & 10.97 \end{aligned}$	
18	- $\mathrm{Lys}(\mathrm{Z}) \cdot \mathrm{DCHA}$	727.90	$\mathrm{C}_{42} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{O}_{6}$	60%	65	$+2.4(\mathrm{MeOH})$	$\begin{aligned} & 69.31 \\ & 69.60 \end{aligned}$	$\begin{aligned} & 7.89 \\ & 7.99 \end{aligned}$	9.62	
19	- Met - CHA	515.67	$\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	78%	140- 1	$+6.2(\mathrm{MeOH})$	$\begin{aligned} & 62.88 \\ & 63.12 \end{aligned}$	$\begin{aligned} & 7.62 \\ & 7.64 \end{aligned}$	$\begin{aligned} & 10.86 \\ & 10.85 \end{aligned}$	6.22 6.07
20	- $\mathrm{Om}(\mathrm{BOC}) \cdot \mathrm{DCHA}$	679.87	$\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{O}_{6}$	$\begin{aligned} & 60 \% \\ & \mathrm{~A} \end{aligned}$	160- 1	$+19.8(\mathrm{MeOH})$	$\begin{aligned} & 67.13 \\ & 67.38 \end{aligned}$	$\begin{aligned} & 8.45 \\ & 8.45 \end{aligned}$	$\begin{aligned} & 10.30 \\ & 10.34 \end{aligned}$	
21	- Phe • DCHA $\cdot 1 / 2$ 2-Propanol	642.83	$\begin{gathered} \mathrm{C}_{33} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{4} \\ +1 / 2\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right) \end{gathered}$	$\begin{aligned} & 72 \% \\ & \mathrm{~B} \end{aligned}$	185-6	$+22.8(\mathrm{MeOH})$	$\begin{aligned} & 71.93 \\ & 71.87 \end{aligned}$	$\begin{aligned} & 8.15 \\ & 8.05 \end{aligned}$	$\begin{aligned} & 8.72 \\ & 8.93 \end{aligned}$	
22	- Pro - CHA	480.56	$\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4}$	$\begin{aligned} & 80 \% \\ & \mathrm{~A} \end{aligned}$	186-8	$+4(\mathrm{MeOH})$	$\begin{aligned} & 67.45 \\ & 67.43 \end{aligned}$	$\begin{aligned} & 7.54 \\ & 7.41 \end{aligned}$	$\begin{aligned} & 11.65 \\ & 11.79 \end{aligned}$	
23	- Ser	371.39	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}$	46%	126-128	- 9.0 (MeOH$)$	$\begin{aligned} & 61.45 \\ & 61.41 \end{aligned}$	$\begin{aligned} & 5.70 \\ & 5.74 \end{aligned}$	$\begin{aligned} & 11.32 \\ & 11.31 \end{aligned}$	
24	- $\operatorname{Ser}\left(\mathrm{Br}^{\text {t }}\right.$) $\cdot \mathrm{CHA}$	526.65	$\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{5}$	$\begin{aligned} & 65 \% \\ & \mathrm{~A} \end{aligned}$	177-84	+ $17.8(\mathrm{MeOH})$	$\begin{aligned} & 66.14 \\ & 66.09 \end{aligned}$	$\begin{aligned} & 8.04 \\ & 8.10 \end{aligned}$	$\begin{aligned} & 10.64 \\ & 10.61 \end{aligned}$	
25	- $\operatorname{Ser}(\mathrm{BZL}) \cdot \mathrm{CHA}$	560.38	$\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{5}$	$\begin{aligned} & 45 \% \\ & \mathrm{~A} \end{aligned}$	139-40	$+32.3\left(\mathrm{CHCl}_{3}\right)$	$\begin{aligned} & 68.58 \\ & 68.55 \end{aligned}$	$\begin{aligned} & 7.14 \\ & 7.24 \end{aligned}$	$\begin{array}{r} 10.00 \\ 9.90 \end{array}$	
26	$\cdot \mathrm{Thr}\left(\mathrm{Bu}^{\mathrm{t}}\right) \cdot \mathrm{CHA}$	540.67	$\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{5}$	$\begin{aligned} & 70 \% \\ & \text { A } \end{aligned}$	208-10	$+0.7(\mathrm{MeOH})$	$\begin{aligned} & 66.64 \\ & 66.65 \end{aligned}$	$\begin{aligned} & 8.20 \\ & 8.27 \end{aligned}$	$\begin{aligned} & 10.36 \\ & 10.42 \end{aligned}$	
27	- Thr (BZL) $\cdot \mathrm{CHA}$	574.70	$\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{5}$	$\begin{aligned} & 54 \% \\ & \mathrm{~A} \end{aligned}$	178-80	$+27.2(\mathrm{MeOH})$	$\begin{aligned} & 68.96 \\ & 68.86 \end{aligned}$	$\begin{aligned} & 7.37 \\ & 7.48 \end{aligned}$	$\begin{aligned} & 9.75 \\ & 9.76 \end{aligned}$	
28	- Trp - CHA	561.74	$\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{4}$	$\begin{aligned} & 78 \% \\ & \mathrm{C} \end{aligned}$	100-102	$+4.4(\mathrm{McOH})$	$\begin{aligned} & 69.56 \\ & 69.46 \end{aligned}$	$\begin{aligned} & 6.90 \\ & 7.05 \end{aligned}$	$\begin{aligned} & 12.29 \\ & 11.94 \end{aligned}$	
29	- Tyr \cdot DCHA	628.81	$\mathrm{C}_{37} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{5}$	$\begin{aligned} & 49 \% \\ & \mathrm{C} \end{aligned}$	112-114	$+39.4(\mathrm{McOH})$	70.67	7.69	8.91	
30	- $\operatorname{Tyr}(\mathrm{BZL}) \cdot \mathrm{CHA}$	636.79	$\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{5}$	$\begin{aligned} & 52 \% \\ & \mathrm{~A} \end{aligned}$	145-146	$+45.4(\mathrm{MeOH})$	$\begin{aligned} & 71.67 \\ & 71.54 \end{aligned}$	$\begin{aligned} & 6.96 \\ & 7.01 \end{aligned}$	$\begin{aligned} & 8.80 \\ & 8.90 \end{aligned}$	
31	- $\operatorname{Tyr}\left(\mathrm{Bu}^{t}\right) \cdot \mathrm{CHA}$	603.78	$\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{~N}_{4} \mathrm{O}_{5}$	$\begin{aligned} & 52 \% \\ & \mathrm{~A} \end{aligned}$	158-161	$+63.0(\mathrm{MeOH})$	$\begin{aligned} & 69.62 \\ & 69.37 \end{aligned}$	$\begin{aligned} & 7.85 \\ & 7.75 \end{aligned}$	$\begin{aligned} & 9.28 \\ & 9.61 \end{aligned}$	
32	- Val - CHA	482.60	$\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{4}$	$\begin{aligned} & 50 \% \\ & \mathrm{~A} \end{aligned}$	162-3	$+4\left(\mathrm{CHCl}_{3}\right)$	$\begin{aligned} & 67.19 \\ & 67.16 \end{aligned}$	$\begin{aligned} & 7.94 \\ & 7.96 \end{aligned}$	$\begin{aligned} & 11.61 \\ & 11.70 \end{aligned}$	

Thus, the ease and specificity of removal distinguish AZOC-favourably from the earlier coloured groups (p.e. PZ-) its colour offers an advantage over the BPOCgroup. The free AZOC-amino-acids appear to be somewhat more stable than BPOC-amino-acids.

The synthesis of reactive intermediates was carried out as follows:

Phenyl-[2-(p-phenylazophenyl)-isopropyl]-carbonate (AZOC-OPh) is a stable crystalline solid. NMR. indicated no deterioration at room temperature after 3 months. It reacts readily either with the benzyl-trimethylammonium (Triton B) salts of amino-acids [2] in dimethylformamide (DMF), procedure B, or preferably with the tetramethyl-guanidine (TMG) salts in dimethylsulfoxide (DMSO), procedure A. Excess quantities of AZOC-OPh can often be recovered unchanged from the reaction mixtures.

2-(p-Phenylazophenyl)-isopropyloxycarbonyl-azide, $\mathrm{AZOC}-\mathrm{N}_{3}$, is also crystalline and quite stable ($p . e$. for months at 0°). It was reacted with amino-acids in $\mathrm{DMSO}+$ TMG, procedure C.

The amino-acid derivatives are quite stable as such, however, most of them were converted to and stored as either cyclohexylamine (CHA) or dicyclohexylamine (DCHA) salts (see Table).

Experimental Part

[^1]dissolved in 20 ml of dichloromethane. A thick paste was gradually formed after the addition. The reaction mixture was further stirred overnight at 0°. The resulting mixture was now quite clear, except for a small amount of undissolved inatter. It was diluted with 100 ml of dichloromethane and the product isolated with the usual procedure. Recrystallization from abs. ethanol: $9.2 \mathrm{~g}(88 \%)$, m.p. $100-3^{\circ}$.
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}(360.39) \quad$ Calc. C 73.32 H 5.59 N 7.77% Found C 73.14 H 5.58 N 8.05%
2-(p-Phenylazo-phenyl)-isopropyloxycarbonyl-hydrazine, $A Z O C-N H N H_{2} .18 \mathrm{ml}$ of hydrazine hydrate were added to the solution of 21.6 g of $\mathrm{AZOC}-\mathrm{OPh}$. The mixture was stirred at room temp. for 18 h and then poured into much ice water. The product was isolated by the usual procedure (cther; 1 N NaOH ; water; NaCl solution; MgSO_{4}). Crystallisation from ether/petroleum ether and diisopropyl-ether: $14.5 \mathrm{~g}(81 \%)$, m.p. $94-96^{\circ}$.
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}(298.33) \quad$ Calc. C 64.37 H $6.08 \quad \mathrm{~N} 18.77 \% \quad$ Found $\mathrm{C} 64.37 \quad \mathrm{H} 6.11 \quad \mathrm{~N} 18.73 \%$
2-(p-Phenylazo-phenyl)-isopropyl-oxycarbonyl-azide, $A Z O C N_{3}$. This compound was prepared essentially according to the procodure of Sieber \& Iselin [2] for BPOC-N ${ }_{3}$. Crystallisation from petroleum ether. Yield 91%, m.p. 49-50 . Characteristic IR. absorption bands at 2810-2870, 2120-2160, 1705, 1445, and 1350-1360 cm^{-1}.
$$
\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}(309.31) \quad \text { Calc. } \mathrm{N} 22.64 \% \text { Found } 22.70 \%
$$

Preparation of $\mathbf{N}(\alpha)$-AZOC-amino-acids. - A) The AZOC-OPh/TMG procedure. $0.225 \mathrm{~g}(3 \mathrm{mmol})$ of glycine in 6 ml of DMSO were treated with $0.38 \mathrm{ml}(3 \mathrm{mmol})$ of tetramethylguanidine (TMG) and $1.08 \mathrm{~g}(3 \mathrm{mmol})$ of AZOC-OPh with gentle stirring at 50° for 4 h . The red, crystalline product obtained by the usual isolation procedure was recrystallized from ether: $0.7 \mathrm{~g}(70 \%)$.
B) The AZOC-OPh/Triton procedure. The procedure is essentially that of Sieber \& Iselin [2] for BPOC-dcrivatives. Example: AZOC • Phe $\cdot \mathrm{OH}, \mathrm{DCHA}$, see Table.
C) The $A Z O C-N_{3} / T M G$ procedure. $1.135 \mathrm{~g}(5 \mathrm{mmol})$ of S -acctamidomethyl-cysteine hydrochloride were suspended by stirring in 6 ml of dry DMF. 2.5 ml (20 mmol) of tetramethyl-guanidine (TMG) were added, followed by $1.54 \mathrm{~g}(5 \mathrm{mmol})$ of solid AZOC- N_{3}. After $31 / 2 \mathrm{~h}$ at 45°, the product obtained by the usual isolation procedure was dissolved in ether and converted to the cyclohexylanine (CHA) salt. Crystallisation from petroleum ether: $1.9 \mathrm{~g}(68 \%)$.

Removal of the AZOC-Group. - Complete conversion of AZOC-glycinc (0.1 m) to glycine, carbon dioxide, and 2-(p-phenylazophenyl)-2-propanol was achieved at room temp. in 5 min with trifluoro-acetic acid/dichloromethane $1.5: 98.5(v / v)$, in 45 min with acetic acid $/ 83 \%$ formic acid/water $7: 1: 2(v / v)$, and in 6 h with acetic acid/water $8: 2(v: v)$.

REFERENCES

[1] R. Schweyzer, P. Sieber \& K. Zatsko, Helv. 41, 491 (1958).
[2] P. Sieber \& B. Iselin, Helv. 57, 614, 622 (1968).
[3] E. Wünsch, "Synthese von Peptiden", Bd. 15 von "Houben-Weyl, Methoden der organischen Chemie", E. Müller, Herausgeber, Georg Thieme Verlag, Stuttgart, 1975.
[4] T. Wieland \& C. Birr, in "Peptides"' (H.C.Beyerman, A. van de Linde \& W. Maassen van den Brink, Eds.), p. 103, North-Holland Publ. Co., 1967; B.E.B. Sandberg \& U. Ragnarsson, Int. J. Peptide Protein Res. 6, 111 (1974); 7, 503 (1975).
[5] Beilstein, Organische Chemie, Erster Ergänzungsband, Bd. XVI, S. 281.

[^0]: ${ }^{1}$) Abbreviations according to the recommendations of the "IUPAC-IUB Commission on Biochemical Nomenclature", p.e. Eur. J. Biochemistry 7, 375 (1967), and [3].

[^1]: M.p. were determined in open capillary tubes and are not corrected. The usual isolation procedure of products from a reaction mixture comprises extraction into an organic solvent (ethyl acetate, ether, dichloromethane, or chloroform), washing of the organic phase with aqueous acid (mostly 1 m citric acid), transfer of acidic products into aqueous alcali and back into fresh organic phase when required, washing with water, drying with conc. NaCl -solution followed by anhydrous sodium- or magnesium-sulfate, filtration, and evaporation of the solvent in a rotatory evaporator at $30-40^{\circ}$ under reduced pressure (10 to 0.01 Torr). Analytical samples were dried at 20° and 0.001 Torr for 24 hours.

 2-(p-Phenylazophenyl)-2-propanol. p-Phenylazo-acetophenone [5] was prepared from nitrosobenzene and p-amino-acetophenone according to the general procedure used earlier [1]; yield 50%. The crystalline compound was reacted in ether with methyl-magnesium-iodide to produce 2-(p-phenylazophenyl)-2-propanol in 70\% yield (after crystallization from ether/petroleum ether), m.p. 85-8 ${ }^{\circ}$.
 $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}(240.29) \quad$ Calc. C 74.98 H 6.71 N $11.66 \% \quad$ Found C 74.76 H 6.82 N 11.86\%
 Phenyl-[2-($\mathrm{p}-$ phenylazo-phenyl)-isopropyl]-carbonate (AZOC-OPh). To a stirred solution of 7.2 g of $2-(p$-phenylazo-phenyl)-2-propanol in 40 ml of dichloromethane and 3.6 ml of pyridine at -5° was added dropwise over a period of 30 min a solution of 4.8 ml of phenyl-chloroformate

